首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80533篇
  免费   9640篇
  国内免费   8237篇
电工技术   5823篇
技术理论   3篇
综合类   5338篇
化学工业   23645篇
金属工艺   3534篇
机械仪表   4277篇
建筑科学   3694篇
矿业工程   1076篇
能源动力   2324篇
轻工业   5334篇
水利工程   956篇
石油天然气   2171篇
武器工业   703篇
无线电   10425篇
一般工业技术   8681篇
冶金工业   2286篇
原子能技术   1990篇
自动化技术   16150篇
  2024年   173篇
  2023年   1284篇
  2022年   1805篇
  2021年   2531篇
  2020年   2597篇
  2019年   2306篇
  2018年   2023篇
  2017年   3057篇
  2016年   3171篇
  2015年   3719篇
  2014年   3992篇
  2013年   5162篇
  2012年   6367篇
  2011年   5514篇
  2010年   4704篇
  2009年   4878篇
  2008年   5045篇
  2007年   6062篇
  2006年   5935篇
  2005年   4988篇
  2004年   4203篇
  2003年   3371篇
  2002年   2665篇
  2001年   2043篇
  2000年   1726篇
  1999年   1560篇
  1998年   1289篇
  1997年   1035篇
  1996年   919篇
  1995年   779篇
  1994年   738篇
  1993年   585篇
  1992年   438篇
  1991年   325篇
  1990年   299篇
  1989年   227篇
  1988年   195篇
  1987年   148篇
  1986年   112篇
  1985年   103篇
  1984年   98篇
  1983年   54篇
  1982年   72篇
  1981年   21篇
  1980年   25篇
  1979年   15篇
  1978年   6篇
  1977年   18篇
  1976年   10篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
2.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
3.
In this article, the memory-based dynamic event-triggered controller design issue is investigated for networked interval type-2 (IT2) fuzzy systems under non-periodic denial-of-service (DoS) attacks. For saving limited network bandwidth, a novel memory-based dynamic event-triggered mechanism (DETM) is proposed to schedule data communication. Unlike existing event-triggered generators, the developed memory-based DETM can utilize a series of newly released signals and further save network resources by introducing interval dynamic variables. Moreover, to improve design flexibility, an IT2 fuzzy controller with freely selectable fuzzy rule number and premise membership functions (MFs) is synthesized. Then, a new switched time-delay system with imperfectly matched MFs is established under the consideration of memory-based DETM and DoS attacks simultaneously. Besides, based on the property of MFs, the boundary information of membership grades and slack matrices are introduced in the stability analysis. Furthermore, by using a piecewise Lyapunov–Krasovskii method, membership-functions-dependent criteria are deduced to ensure the asymptotic stability of built fuzzy switched systems. Finally, the effectiveness of proposed control strategies is demonstrated by simulation examples.  相似文献   
4.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
5.
《Soils and Foundations》2022,62(6):101222
This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.  相似文献   
6.
In this article, an adaptive denoising method is suggested to accurate investigate the optical and structural features of polymeric fibers from noisy phase shifting microinterferograms. The mixed class of noise that may produce in the phase-shifting interferometric techniques is established. To our knowledge, this is an early study considered the mixing noises that may occur in microinterferograms. The suggested method utilized the convolution neural networks to detect the noise class and then denoising, it according to its class. Four convolution neural networks (Googlenet, VGG-19, Alexnet, and Alexnet–SVM) are refined to perform the automatic classification process for the noise class in the established data set. The network with the highest validation and testing accuracy of these networks is considered to apply the suggested method on realistic noisy microinterferograms for polymeric fibers, polypropylene and antimicrobial polyethylene terephthalate)/titanium dioxide, recoded using interference microscope. Also, the suggested method is applied on noisy microinterferograms include crazing and nanocomposite material. The demodulated phase maps and the three-dimensional birefringence profiles are calculated for tested fibers according to the suggested method. The obtained results are compared with the published data for these fibers and found to be in good agreements.  相似文献   
7.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   
8.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
9.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
10.
Several immune checkpoint molecules and immune targets in leukemic cells have been investigated. Recent studies have suggested the potential clinical benefits of immuno-oncology (IO) therapy against acute myeloid leukemia (AML), especially targeting CD33, CD123, and CLL-1, as well as immune checkpoint inhibitors (e.g., anti-PD (programmed cell death)-1 and anti-CTLA4 (cytotoxic T-lymphocyte-associated protein 4) antibodies) with or without conventional chemotherapy. Early-phase clinical trials of chimeric antigen receptor (CAR)-T or natural killer (NK) cells for relapsed/refractory AML showed complete remission (CR) or marked reduction of marrow blasts in a few enrolled patients. Bi-/tri-specific antibodies (e.g., bispecific T-cell engager (BiTE) and dual-affinity retargeting (DART)) exhibited 11–67% CR rates with 13–78% risk of cytokine-releasing syndrome (CRS). Conventional chemotherapy in combination with anti-PD-1/anti-CTLA4 antibody for relapsed/refractory AML showed 10–36% CR rates with 7–24 month-long median survival. The current advantages of IO therapy in the field of AML are summarized herein. However, although cancer vaccination should be included in the concept of IO therapy, it is not mentioned in this review because of the paucity of relevant evidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号